

Ball Bearing Positioners Miniature and Standard

Parker precision linear stages provide controlled, precise point-topoint positioning along a linear axis. Stages are comprised of two basic components: a precision linear ball slide which serves as a linear bearing and guide, and a drive mechanism which accurately moves and positions the slide top along the linear axis.

Contents	
62-63	Overview
64-67	1.25" (31,8 mm) Wide or Less
68-73	1.75" (44,5 mm) Wide
74-79	2.62" (66,5 mm) Wide
80-83	5.00" (127,0 mm) Wide
84-86	6.00" (152,4 mm) Wide
87-88	Performance Curves

Ball Bearing Positioners

Miniature and Standard Size Ball Bearings Positioners

Ball Bearing Positioner Design Principles

Parker precision linear stages provide controlled, precise point-to-point positioning along a linear axis. Stages are comprised of two basic components: a precision linear ball slide which serves as a linear bearing and guide, and a drive mechanism which accurately moves and positions the slide top along the linear axis.

Three types of drive mechanisms are available: a fine screw, a micrometer, and a differential screw. The fine screw is used for fine resolution positioning. The micrometer is used whenever a position readout is required. The differential screw is used for applications requiring extremely fine resolution positioning. Ball bearing positioning stages are available in a straight stage/drive configuration as well as a side-drive configuration.

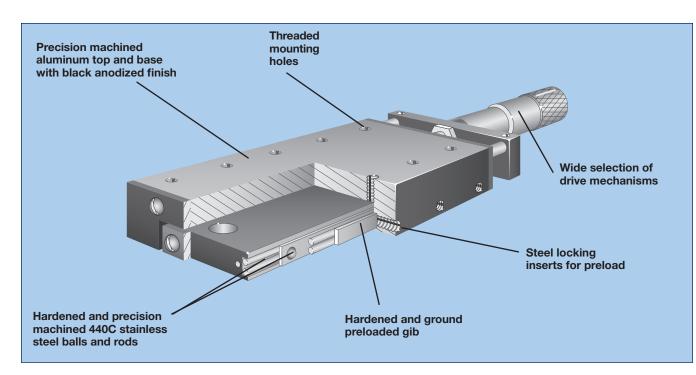
The linear positioner operates in a simple manner: a bracket which supports the drive screw is attached to the slide base. The end of the drive screw rests against the end of the moveable top. There are two extended springs "pulling" the slide top toward the screw so that the top will always be held firmly against the screw end. When the screw is turned clockwise, it advances and pushes the slide top along the linear axis. When turned counter clockwise, the screw retracts and the slide top follows because of the spring pressure holding the top against the screw end. The result is a very smooth linear motion, accurately controlled by rotation of the drive mechanism.

- Precision Quality
- Budget Friendly
- Largest Selection
- Easy multi-axis configuration
- No maintenance
- Vacuum preparation and custom options

Standard Features

Exacting manufacturing techniques, combined with demanding quality control standards, permit Parker Daedal to offer precision stages of unsurpassed quality. Selection can be made easily, based on required travel, load, and mounting surface requirements. Stages are available in single or multi-axis configurations (XY, XZ, and XYZ), and all have built-in quality features including:

- Aluminum top and base and stainless steel bearings
- Low friction linear adjustment with no backlash or side play
- Factory preloaded to provide dynamic stability and minimum runout
- Both top and bottom mounting surfaces are precision machined to provide flat mounting surfaces
- Locking screw to positively lock stage without affecting position (standard on most models)
- Straight line accuracy of 0.00008 in/in of travel
- Selectable drive mechanisms: Micrometer (Imperial or metric), Fine screw (64 pitch), Differential screw, Digital micrometers (Imperial and Metric)


Digital Micrometers

The 1.0" (25 mm) travel micrometer provides an LCD readout to 0.00005 in (0,001 mm) resolution and features incremental and/or absolute positioning modes and automatic shutdown to conserve the integral battery. The battery will power the unit for 500 hours of use. The 2.0" (51 mm) micrometer is accurate to \pm 0.0001 in (\pm 2 microns) with a resolution and LCD reading to 0.00005 in (1 micron). The batteries will power the unit up to 500 hours.

How to Order

Use the overview chart on the following page to select the appropriate ball bearing positioner. Refer to the individual specifications page for complete performance and mechanical specifications. To order ball bearing positioners, use the model number corresponding to the specific size and travel length selected. A variety of modifications to standard models are available to meet custom requirements. Contact our application engineering department with your design specifications.

Selection

	Width	Tra	ivel	Norma	al Load	Drive Orio	entation	Mour	nting	
Series	in (mm)	in	(mm)	lbs	(kg)	Center	Side	Imperial	Metric	Page
MM-1	≤ 1.25	0.125	(3,2)	0.5	(0,25)	•		•		64-65
MM-3 3900	≤1.25 (≤31,8)	0.50	(12,7)	0.75 6	(0,34) (2,7)	•	•	•	•	64-65 66-67
4000 4100 4200 4300	1.75 (44,5)	0.50 or 1.00	(12,7 or 25,4)	25 30 42 55	(11) (13) (19) (25)	• • •	•	• • •	• • •	68-69,72 70-71, 73 70-71, 73 70-71, 73
4500 4600 4700 4800	2.62 (66,5)	1.00	(25,4)	62 88 106 123	(28) (40) (48) (56)	• • •	•	• • •	• • •	74-75, 78 76-77, 79 76-77, 79 76-77, 79
4400	5.0	1.0	(25,4)	105	(48)	•	•	•	•	80-83
4400	(127,0)	2.0	(50,8)	105	(48)	•	•	٠	•	80-83
		1.0	(25,4)	100	(45)	٠		٠	•	84-85
		2.0	(50,8)	100	(45)	•		٠	•	84-85
		4.0	(100,0)	100	(45)	•		•	•	86
4900	6.0 (152,4)	6.0	(150,0)	154	(70)	٠		•	•	86
	(· -, · /	8.0	(200,0)	205	(93)	•		•	•	86
		10.0	(250,0)	243	(110)	٠		•	•	86
		12.0	(300,0)	294	(133)	•		•	•	86

Ball Bearing Positioners

4900/M4900 Series

Specifications	Imperial	Metric
Travel:	1.0 – 2.0 in	25 – 50 mm
Size: Width Length (mid-travel) Height	6.00 in 9.59 – 11.11 ir 2.00 in	152,4 mm 1243,6 – 282,2 mm 50,8 mm
Load: Normal Thrust T _a (Std. thimble) Thrust – Tb (Std. thimble) Thrust T _a (Std. thimble) Thrust – Tb (Std. thimble) Moment – Yaw, Pitch, Roll	100 lbs 30 lbs 3.0 lbs 50 lbs 3.0 lbs See page 88	45 kg 13,6 kg 1,36 kg 23,0 kg 1,36 kg See page 88
Straight line accuracy:	0.00008 in/in of travel	2 µm/25 mm of travel
Micrometer graduations: Standard thimble Large thimble	0.001 in 0.0001 in	0,01 mm 0,001 mm
Weight:	7 lbs/axis	1,4 kg/axis
Construction:	Aluminum top 440C stainless	and base/ steel bearings
Mounting surface:	Precision mach	nined
Finish:	Black anodize	
Dimensions in (mm) Tb		Ta Standard Thimble
Imperial Models – Metric Models – ((mid-travel) 0.75

Large thimble (left) and standard thimble with optional position lock (right). To order the optional lock, add -L to the model number selected from the chart below.

Consult factory for critical dimension concerns.

		St	andard Thimble		Large Thimble
Drive Mechanism	Travel	Model*	Dimension A – in (mm)	Model*	Dimension A – in (mm)
Imperial Micrometer	1.0 in	4914	3.59	4910	4.44
	2.0 in	4915	5.11	4911	5.94
Metric Micrometer	25 mm	4916	3.59	4912	4.44
	50 mm	4917	5.11	4913	5.94
.e Metric Micrometer	25 mm	M4916	(91,2)	M4912	(112.8)
	50 mm	M4917	(1289,8)	M4913	(150,9)
Imperial Micrometer	1.0 in	M4914	(91,2)	M4910	(112.8)
	2.0 in	M4915	(129,8)	M4911	(150,9)
* Add -L to model number for	optional positior	ı lock.			

4900-DM/M4900-DM Series

4900-DIVI/IVI4900-DIVI	Jenes		
Specifications	Imperial	Metric	
Travel:	2.0 in	50 mm	The second se
Size: Width Length (mid-travel) Height	6.00 in 13.93 in 2.00 in	152,4 mm 353,8 mm 50,8 mm	
Load: Normal Thrust T _a Thrust – T _b Moment – Yaw, Pitch, Roll	100 lbs 50 lbs 3.0 lbs See page 88	45 kg 23,0 kg 1,36 kg See page 88	P At Banker
Straight line accuracy:	0.00008 in/in of travel	2 µm/25 mm of travel	0
Micrometer graduations: Large thimble	0.0001 in	0,001 mm	Digital micrometer positioner shown with optional position
Weight:	7 lbs/axis	3,2 kg/axis	lock. To order the optional lock, add -L to the model
Z-Axis bracket options: (See page 124-127)	4990-04	M4990-04	number selected from the chart below.
Construction:	Aluminum top 440C stainless	and base/ s steel bearings	
Mounting surface:	Precision macl	-	
Finish:	Black anodize		Consult factory for critical dimension concerns.
	odels – 5.00 dels – (125,0) Ctr'd	0.75 (19,0)	7.93 (201,4) (mid-travel) (mid-travel) 4.00 x 0.01 (101,6 x 0,25) Relief Depth
Imperial Models – 2 Metric Models – (6:		6.00 (152,4)	Imperial Models – 0.50 Metric Models – (13,7) (43,0)
2.0 (50, Qty. (4) C'Bored Mtg. Holes (Imperial Models – 1/4" S.H.C Metric Models – M6 S.H.C.S	Base) for: Metric	- Ctr'd	Ctr'd Imperial Models – 5.00 Metric Models – (125,0)

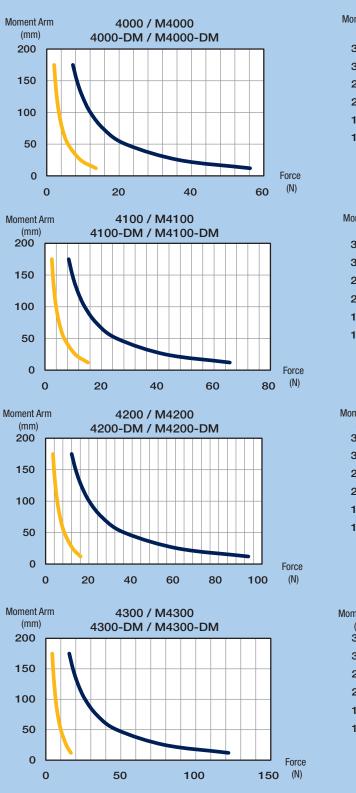
Model* Imperial 4911-DM * Add -L to model number for Metric M4911-DM optional position lock.

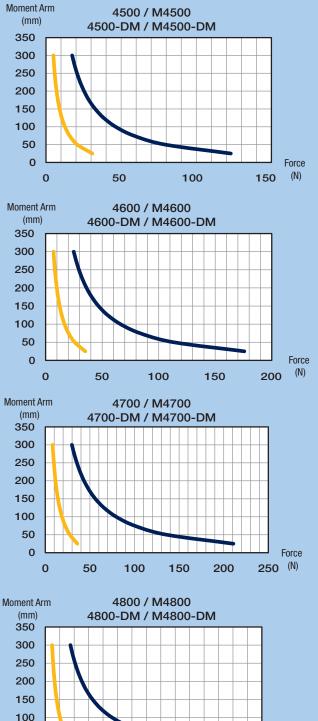
Parker Hannifin Corporation Electromechanical & Drives Division

4900/M4900 Series


	Imperial	Metric		
Travel:	4.0 – 12.0 in	100,0 – 300,0 mm		0 0
Size: Width Length	6.00 in 9.39 – in 2.00 in	152,4 mm mm 50,8 mm		Contractor of the
Height	2.00 11	00,0 mm		
.oad: Normal Thrust T _a Thrust – T _b Moment – Yaw, Pitch, Roll	100 – 294 lbs 30 lbs 30 lbs See page 88	45 – 133 kg 13,6 kg 13,6 kg See page 88		
Straight line accuracy:	0.00008 in/in of travel	2 µm/25 mm of travel		C Internal
Readout graduations:	0.001 in	0,01 mm		
Veight:	4 – 12 lbs/axis	1,8 – 5,4 kg/axis		
Z-Axis bracket options: See page 124-127)	4990-04/-12	M4990-04/-12		oner with readout (left); positioner
Construction:	Aluminum top a 440C stainless		order the optional lock,	tional position lock (right). To add -L to the model number
Mounting surface:	Precision mac	hined	selected from the chart	
Finish:	Black anodize		Consult factory	r for critical dimension concerns.
Dimensions in (mm) Tb	Imperial Models – 2.50 Metric Models – (62,5)		With Readout Models: 4955, 4965 M4955, M4965	No Readout Models: 4945 M4945
Metric Models – (125,0)			Qty. "F" Mtg. Holes (Top) Imperial Models – 1/4-20 Thd. Metric Models – M6 Thd.	(86.1)
6.00			4.00 x 0.01	
	• • •		4.00 x 0.01 (101,6 x 0,25) Relief Depth	6.00 (152.3) (152.3) (152.3) (152.3) (152.3)
(152,4)	• • •	0 0)	(101,6 x 0,25)	(152.3)
	A (top & base lgth)	1/2A	(101.6 x 0.25) Relief Depth	
(152,4) 2.00 (50,8)	A (top & base lgth)	1/2A	(101.6 x 0.25) Relief Depth	
(152,4) 2.00 (50,8) C Oty. "G" C'Bored Mtg. Holes (Bas Imperial Models – 1/4" S.H.C.S. Metric Models – M6 S.H.C.S. Metric Models – M6 S.H.C.S. No Imperial Models – M6 S.H.C.S. No Imperial Models – M6 S.H.C.S.	A (top & base lgth)	1/2A	(101.6 x 0.25) Relief Depth	(152.3) (82.5) (43.0
(152,4) 2.00 (50,8) 0 0 0 0 0 0 0 0 0 0 0 0 0	A (top & base lgth)	1/2A	(101.6 x 0.25) Relief Depth	(152.3) (152.5) (15

* Add -L to model number for optional position lock.


Qty G


Ball Bearing Positioner Performance

Yaw & Pitch Roll

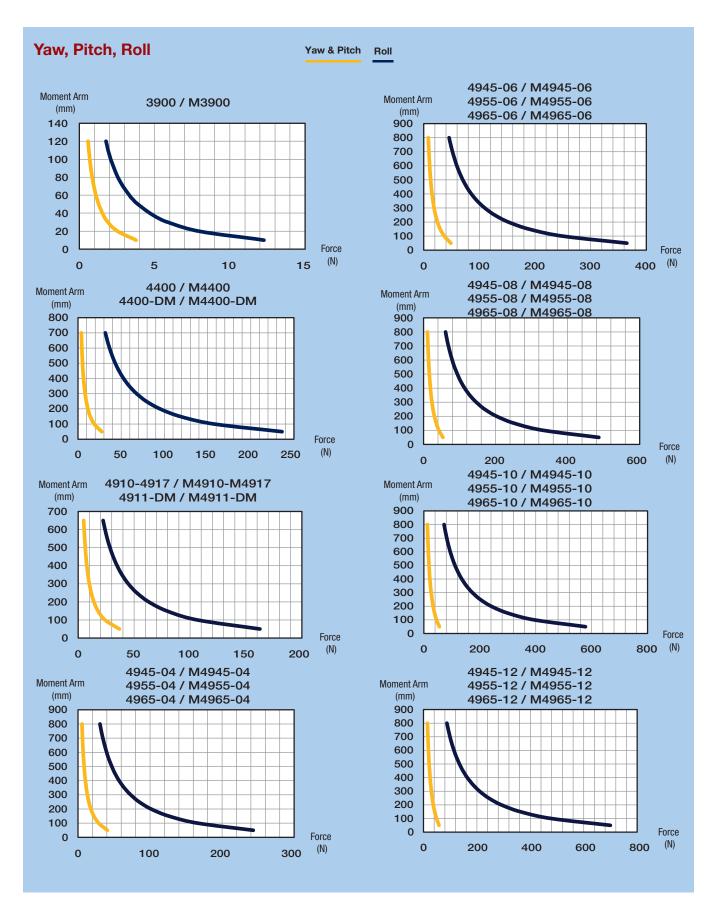
Ball Bearing Positioners

Force

(N)

300

50


0

0

100

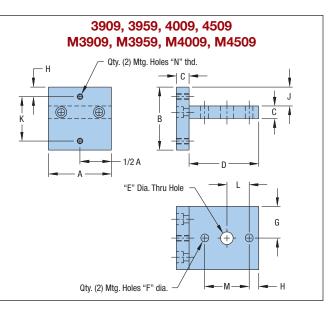
200

Ball Bearing Positioners

www.parker.com/emn

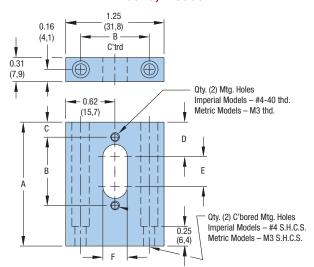
Parker Hannifin Corporation Electromechanical & Drives Division

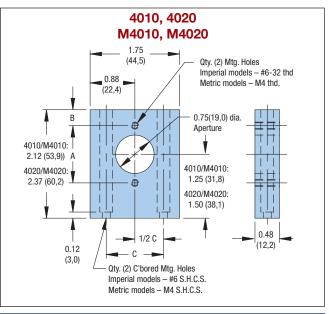

Accessories for Linear and Rotary Positioners


Parker offers a complete line of Z-axis brackets to combine ball bearing and cross roller stages into three axis positioning systems. We also offer drive mechanisms in an assortment of standard and digital micrometer heads, fine adjustment screws, and differential screws. Optical components including beam directors, optical mounts, mirror mounts and optical cells are also available.

Contents

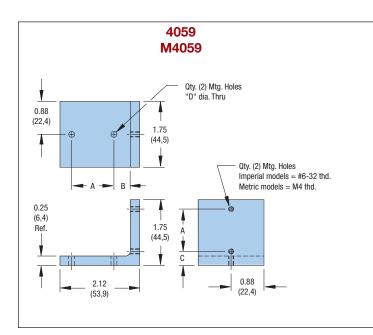
124-127 128-129 130-132 Z-Axis Brackets Micrometer Heads Optical Mounts

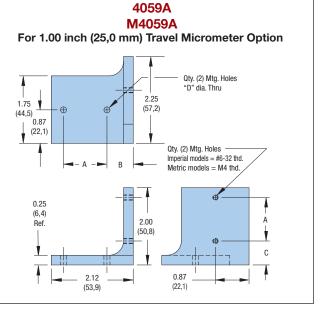

Z-Axis Brackets



	Dimensions – in (mm)										Thd.			
	Model	Α	В	С	D	E	F	G	н	JJ	κ	L	М	Ν
1	3909	1.25	1.25	0.25	1.38	0.25	0.156	0.62	0.19	0.38	0.88	0.44	0.88	#4-40
erial	3959	1.25	1.25	0.25	1.38	0.25	0.156	0.62	0.19	0.04	0.88	0.44	0.88	#4-40
ď	4009	1.75	1.69	0.25	1.88	_	0.156	0.88	0.31	0.63	1.12	_	1.12	#6-32
-	4509	2.44	2.62	0.38	2.75	_	0.218	1.22	0.31	0.93	2.00	_	2.00	#10-32
	M3909	(31,8)	(31,8)	(6,4)	(35,1)	(6,4)	(4,0)	(15,7)	(5,9)	(9,7)	(20,0)	(10,0)	(20,0)	M3
tric	M3959	(31,8)	(31,8)	(6,4)	(35,1)	(6,4)	(4,0)	(15,7)	(5,9)	(1,0)	(20,0)	(10,0)	(20,0)	M3
Metri	M4009	(44,5)	(42,9)	(6,4)	(47,8)	—	(4,8)	(22,4)	(7,3)	(16,0)	(30,0)	—	(30,0)	M4
	M4509	(62,0)	(66,5)	(9,7)	(69,9)	—	(7,3)	(31,0)	(8,4)	(23,6)	(50,0)	—	(50,0)	M6

3910, 3960 M3910, M3960




		Dimensions – in (mm)							
	Model	Α	В	С	D	E	F		
Imperial	3910 3960	1.58 2.33	0.88	0.19	0.44	0.38	0.31		
Metric	M3910 M3960	(40,1) (59,2)	(20,0)	(5,9)	(12,3)	(7,1)	(6,4)		

		Dimensions – in (mm)						
	Model	Α	В	С				
Imperial	4010	1.12	0.31	1.12				
Metric	M4010	(30,0)	(7,1)	(30,0)				

Dimensions - in (mm)

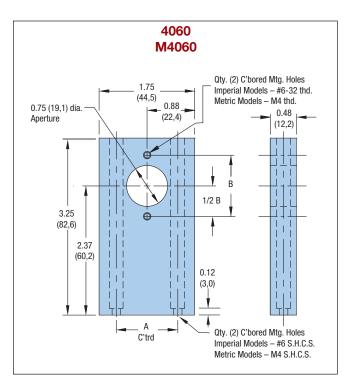
В

0.68

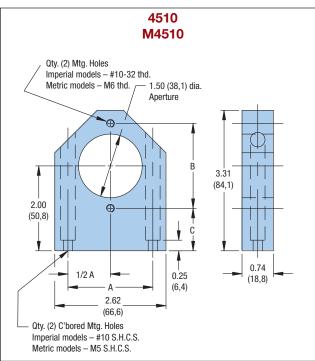
(16,8)

С

0.62


(15,2)

D


0.16

(4,8)

		Dimensions – in (mm)						
	Model	Α	В	С	D			
Imperial	4059	1.12	0.68	0.38	0.16			
Metric	M4059	(30,0)	(16,8)	(8,8)	(4,8)			

		Dimensions – in (mm)				
	Model	Α	В			
Imperial	4060	1.13	1.13			
Metric	M4060	(30,0)	(30,0)			

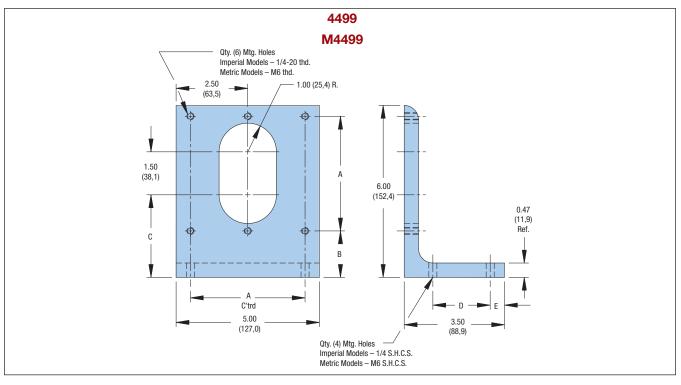
Α

1.12

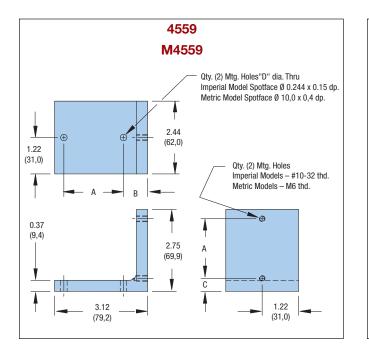
(30,0)

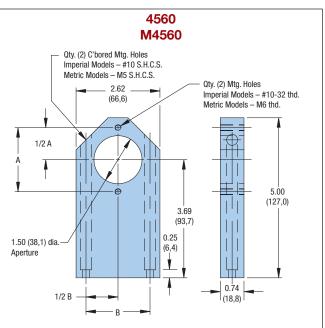
Model

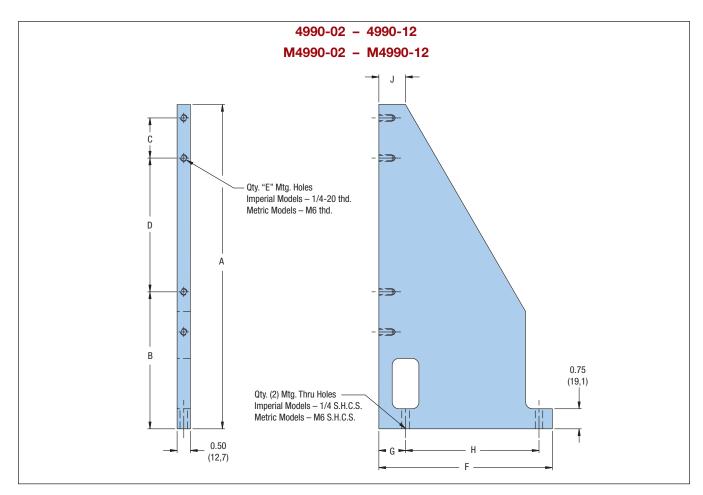
4059A


M4059A

Imperial


Metric


		Dimensions – in (mm)						
	Model	Α	В	С				
Imperial	4510	2.00	2.00	1.00				
Metric	M4510	(50,0)	(50,0)	(25,8)				


		Dimensions – in (mm)							
	Model	Α	В	С	D	E			
Imperial	4499	4.00	1.62	2.88	2.00	0.50			
Metric	M4499	(100,0)	(40,5)	(71,4)	(50,0)	(13,1)			

l	Dimensions – in (mm)				
	Model	Α	В	С	D
Imperial	4559	2.00	0.81	0.44	0.22
Metric	M4559	(50,0)	(20,9)	(11,5)	(5,5)

		Dimensions – in (mm)									
	Model	Α	В	С	D	E	F	G	н	J	
	4990-02	6.00	1.50	-	4.00	2	5.50	1.00	4.00	1.00	
	4990-04	8.12	2.62	-	5.00	2	6.50	1.00	5.00	1.00	
Imperial	4990-06	12.12	5.12	1.5	5.00	4	6.50	1.00	5.00	1.00	
du	4990-08	17.12	8.62	3.0	5.00	4	6.75	1.25	5.00	1.50	
-	4990-10	20.50	10.00	4.0	6.00	4	6.75	1.25	5.00	1.50	
	4990-12	24.12	11.62	5.0	7.00	4	6.50	1.00	5.00	1.00	
	M4990-02	(152,4)	(38,9)	-	(100,0)	2	(139,7)	(26,2)	(100,0)	(25,4)	
	M4990-04	(206,2)	(67,6)	-	(125,0)	2	(165,1)	(26,4)	(125,0)	(25,4)	
tric	M4990-06	(307,8)	(131,2)	(37,5)	(125,0)	4	(165,1)	(26,4)	(125,0)	(25,4)	
Metric	M4990-08	(434,8)	(220,0)	(75,0)	(125,0)	4	(171,5)	(32,8)	(125,0)	(38,1)	
	M4990-10	(520,7)	(255,2)	(100,0)	(150,0)	4	(171,5)	(32,8)	(125,0)	(38,1)	
	M4990-12	(612,6)	(296,6)	(125,0)	(175,0)	4	(171,5)	(32,8)	(125,0)	(38,1)	

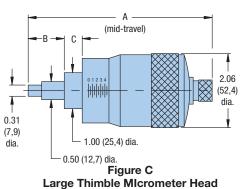
9510-9530 Series Micrometer Heads

Parker Daedal micrometer heads are recommended for any application requiring micrometer accuracy in settings and adjustment. These units feature a hardened and ground spindle, easy-to-read graduations, and an attractive nonglare satin chrome finish.

9511E 9511M 0.14 (3,5) dia. 0.53 (13,5) dia. 0.31 (7,9) dia.

Figure A Mini Thimble MIcrometer Head

В


(mid-travel)

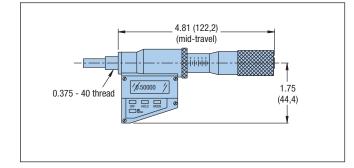
9512E, 9524E, 9526E 9512M, 9524M, 9526M

Figure B Standard Thimble MIcrometer Head

9531E, 9532E 9531M, 9532M

Dimensions - in (mm) Graduations Travel Model Number В С D Figure in (mm) in (mm) Α 9511E А 0.50 0.001 2.03 0.50 0.187 9512E В 0.50 0.001 2.63 0.50 0.375 0.54 Imperial 9524E В 1.00 0.001 4,23 0.75 0.625 0.73 9526E В 2.00 0.001 6.16 1.25 0.625 0.73 9531E С 1.00 0.0001 5.18 0.94 0.56 9532E С 2.00 0.56 0.0001 7.18 1.44 _ 9511M А (13)(0,01)(51, 6)(13,0)(4,7)9512M В (13)(66, 8)(13,7) (0,01)(13,0) (9,5) Metric 9524M В (25) (107, 4)(0,01)(19,0)(15, 9)(18.5)В 9526M (50)(156, 5)(32, 0)(15, 9)(18, 5)(0,01)9531M С (25) (0,002) (131, 6)(23, 9)(14, 2)9532M С (50) (0,002)(182, 4)(36, 6)(14, 2)

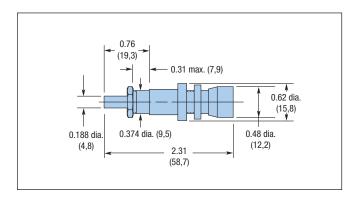
www.parker.com/emn


Parker Hannifin Corporation Electromechanical & Drives Division

9550 Series Digital Micrometer Heads

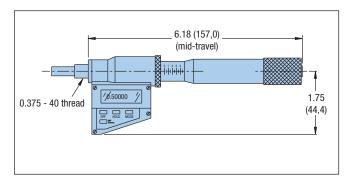
Model 9551

The 9551 precision electronic digital micrometer head provides an LCD readout to 0.00005 inch resolution. The micrometer features:

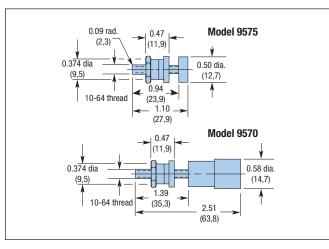

- Incremental and/or absolute positioning modes
- Zero set at any position, inch and millimeter readout (0.001 mm resolution), display hold, and automatic shutdown after two hours to conserve the integral battery
- 1.00 inch micrometer travel
- Battery powered for 500 hours of use

9560 Series Differential Screws

Model 9560: 0.75 in Range


The 9560 differential screw offers two linear adjustment ranges in one unit: a coarse adjustment range of 0.31 in (8 mm) with a 48-pitch thread and a fine adjustment range of 0.078 in (2 mm) with a pitch equal to 336 threads per inch. The 9560 is interchangeable with 9511 – 9532 series micrometer heads.

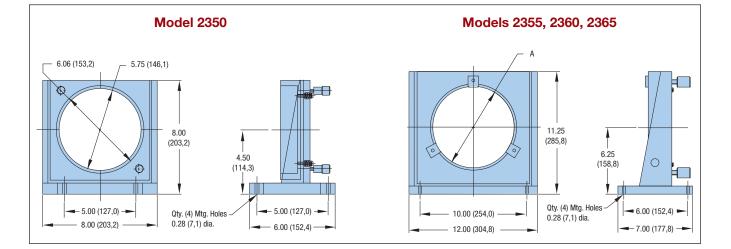
Model 9552


The 9552 precision electronic digital micrometer offers a 0-2 inch travel range with a 0.00005 inch resolution. Features include:

- 2 inch spindle
- Display face swivels for easy reading at various angles
- Non-rotating spindle
- Pre-set, zero, and inch/mm
- Carbide tipped measuring face
- Battery powered for 5,000 hours of use

9570 Series Fine Adjsutment Screws Model 9570: 0.75 in Range Model 9575: 0.50 in Range

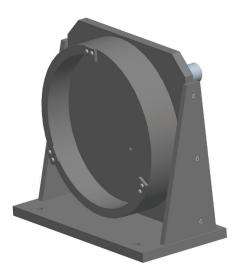
These steel adjustment screws feature a 64-pitch thread, making them ideal for applications where finer resolution is required, but positional readout is not. These screws are easily interchanged with the 9511 – 9532 series micrometer heads.

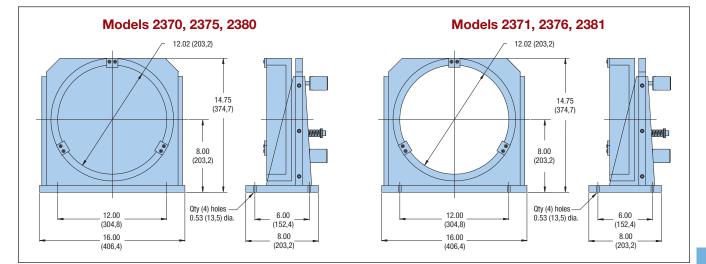

Optical Mounts

Optical Cell Mounts

Model 2350: 6.0" Diameter Model 2355: 7.0" Diameter Model 2360: 8.0" Diameter Model 2365: 9.0" Diameter

Parker Daedal optical mounts are highly stable, adjustable mounts for optics up to 9" in diameter and 1.25" thick. These mounts feature precise kinematic ball pivot adjustment on two axes, with orthogonal three-point suspension.


Specifications	2350	2355	2360	2365	
Optic Size Opening – in (mm) Dimension "A" Dia. max.: Thickness:	6.03 (153,1) 1.00 (25,4)	7.06 (179,3) 1.25 (31,75)	8.06 (204,7) 1.25 (31,7)	9.06 (230,1) 1.25 (31,7)	
Optic Retention:	Threaded retainer	3 mounting clips	3 mounting clips	3 mounting clips	
Range:	5°	5°	5°	5°	
Resolution:	0.5 arc-sec	0.5 arc-sec	0.5 arc-sec	0.5 arc-sec	
Adjustment:	2 – 64-pitch screws	3 – 32-pitch screws	3 – 32-pitch screws	3 – 32-pitch screws	
Weight:	7.5 lb (16,5 kg)	20 lb (44 kg)	20 lb (44 kg)	20 lb (44 kg)	
Construction:		Aluminum/st	tainless steel		
Finish:		Black a	anodize		



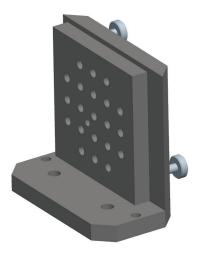
Optical Cell Mounts

Model 2370/2371: 10.0" Diameter Model 2375/2376: 11.0" Diameter Model 2380/2381: 12.0" Diameter

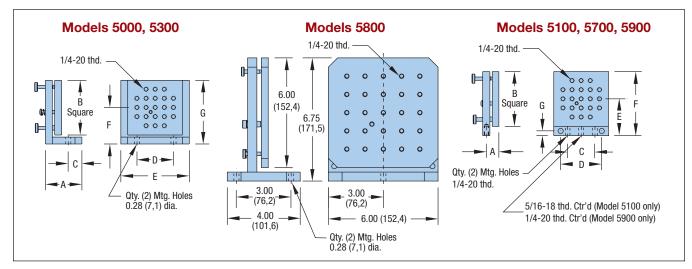
Parker Daedal optical mounts are highly stable, adjustable mounts for optics up to 12" in diameter and 2.0" thick. These mounts feature precise kinematic ball pivot adjustment on two axes, with orthogonal three-point suspension. Solid back models are designed to support reflective optics.

	S	olid Back Mode	ls	Aperture Models			
Specifications	2370	2375	2380	2371	2376	2381	
Optic Size Opening – in (mm) Dimension "A" Dia. max.: Thickness:	10.02 (254,5) 2.00 (50,8)	11.02 (379,9) 2.00 (50,8)	12.02 (305,3) 2.00 (50,8)	10.06 (255,5) 2.00 (50,8	11.06 (280,9) 2.00 (50,8	12.06 (306,3) 2.00 (50,8	
Optic Retention:		3 mounting clips		3 mounting clips			
Range:		7°		7°			
Resolution:		0.5 arc-sec		0.5 arc-sec			
Adjustment:	3 – 32-pitch screws			3 – 32-pitch screws			
Weight:		45 lb (99 kg)		41 lb (90 kg)			
Construction:	Alur	minum/stainless s	teel	Aluminum/stainless steel			
Finish:		Black anodize		Black anodize			

Parker Hannifin Corporation Electromechanical & Drives Division



Accessories


Mirror Mounts

Model 5000/5100: 3.0" Square Mounting Surface Model 5300/5700: 4.5" Square Mounting Surface Model 5800/5900: 6.0" Square Mounting Surface

Parker Daedal mirror mounts are patterned with 1/4-20 holes on 0.5" or 1.0" centers to mount mirrors and other hardware. All models except the 5800 have two fine resolution 64-pitch adjustment screws to provide precise tilting of the mounting surface in two axes. The 5800 is equipped with three adjustment screws to provide precise tilting in two axes.

	An	gled Base Mod	els	Flat Base Models			
Specifications	5000	5300	5800	5100	5700	5900	
Mounting Surface Size (Square) – in (mm) Holes – (Qty. x Center)	3.0 (76,2) 21 x 0.50"	4.5 (114,3) 49 x 0.50"	6.0 (152,4) 25 x 1.0"	3.0 (76,2) 21 x 0.50"	4.5 (114,3) 49 x 0.50"	6.0 (152,4) 25 x 1.0"	
Range:	12°	8°	4°	12°	8°	4°	
Resolution:	1.0 arc-sec	0.75 arc-sec	0.5 arc-sec	1.0 arc-sec	0.75 arc-sec	0.5 arc-sec	
Weight – Ib (kg)	1 (2,2)	2 (4,4)	4.1 (9)	0.7 (1,5)	1.6 (3,5)	3 (6,6)	
Adjustment:	2 – 64-pitch screws (3 screws on 5800)			2 – 64-pitch screws			
Construction:	Aluminum/stainless steel			Aluminum/stainless steel			
Finish:		Black anodize		Black anodize			

	Dimensions – in (mm)										
Model	Α	В	D	D	E	F	G				
5000	2.00 (50,8)	3.00 (76,2)	0.75 (19,1)	2.00 (50,8)	3.75 (95,3)	2.00 (50,8)	3.50 (88,9)				
5300	3.00 (76,2)	4.50 (114,3)	1.25 (31,8)	4.00 (101,6)	4.50 (114,3)	2.88 (73,2)	5.12 (130,1)				
5100	0.69 (17,5)	3.00 (76,2)	1.50 (38,1)	2.25 (57,2)	2.00 (50,8)	3.50 (88,9)	0.25 (6,4)				
5700	0.69 (17,5)	4.50 (114,3)	3.00 (76,2)	3.75 (95,3)	2.88 (73,2)	5.12 (130,1)	0.25 (6,4)				
5900	0.88 (2,4)	6.00 (152,4)	4.00 (101,6)	5.38 (136,7)	3.25 (82,6)	6.25 (158,8)	0.31 (7,9)				

www.parker.com/emn

Parker Hannifin Corporation Electromechanical & Drives Division

Travel

The travel listed is the total travel of the positioner from hard stop to hard stop.

Bearing Load Capacity

Normal Load

This is the maximum downward (compression) load or force which can be applied to the positioner perpendicular to the mounting surface. The center of force or the C.G.

of the load must be located in the center of

the mounting surface. For loads which are offset from this position, refer to moment loads.

Inverted Load

Same as a normal load except in an upward (tension) direction.

Moment Load

This refers to forces which are offset (cantilevered) from the bearing centers and therefore producing uneven loading on the

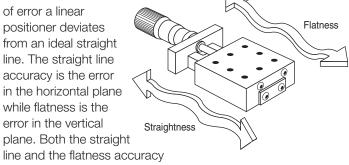
bearings. This uneven loading means that some bearings are supporting more of the load

than others. For this reason it is very important to determine if the moment loading for a given positioner is within acceptable limits. These moment forces are categorized by the direction they act in Pitch, Roll or Yaw; see diagram at left. When loading results in moments acting in only one of the moment directions (pitch, roll or yaw) it is called a single direction moment. Examples of this type of loading are shown below. How to calculate the maximum allowable moment load is discussed on the following page.

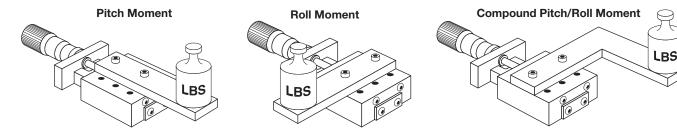
Thrust Capacity

Thrust capacity is the maximum force or load which can be applied in the direction of travel without damage to positioning stage components.

${\rm T}_a$ and ${\rm T}_b$ Thrust Capacity for Micrometer, Fine Screw and Differential Screw Drives


With these types of drives the mounting surface or stage carriage is pressed against the drive mechanism by means of a spring. Because of this the maximum thrust which the stage assembly can maintain is different when pressing toward the spring or away from it. When pressing toward the spring, the force is taken up by the drive mechanism (i.e. micrometer). While pulling away, the force is being held in place by the spring. Stages with this type of mechanism have two thrust capacity specifications (Ta and Tb). Ta refers to the load capacity against the micrometer and Tb is the spring load capacity. Refer to specific product drawings for load direction.

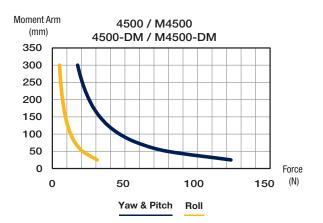
Screw Drive Thrust Capacity


Stages which use screw drive assemblies will only have one thrust capacity rating. This rating is for either direction of travel.

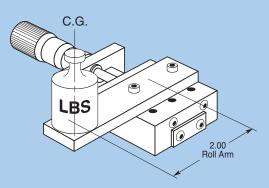
Straight Line and Flatness Accuracy

This is the amount of error a linear positioner deviates from an ideal straight line. The straight line accuracy is the error in the horizontal plane while flatness is the error in the vertical plane. Both the straight

are measured at the moving carriage surface center.

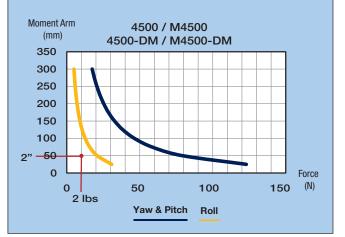


Engineering Reference


Calculating Maximum Allowable Moment Loads on Linear Slides and Stages

To determine if a load or force is within acceptable moment load ranges follow the steps below:

- 1. Calculate maximum load and or force which will be applied to the positioner. Include brackets and other axes which are mounted to the positioner.
- 2. Locate the center of gravity of the load.
- 3. Determine if there is a single or compound moment.
- 4. Measure the distance from the center of force or C.G. to the center of the linear stage carriage. This is the moment arm length and is designated A_S for single direction moments and A_C for compound moments.
- 5. Locate the moment load graph for the positioner you are interested in (located in back of individual product section, esee example below). The X axis of the graph is the Force, the Y axis is the allowable moment arm A_S for single direction moments.
- 6. Locate the moment curve(s) which your load is acting in (pitch, roll or yaw).
- 7. Locate your load force on the X axis of the graph.
- 8. Draw a vertical line from the Force location on the X axis parallel with the Y axis.
- 9. Find the moment arm distance on the Y axis. Draw a horizontal line from this point parallel with the X axis until the vertical and horizontal lines intersect.
- 10.If the intersection point is below the moment curve in question then the stage is within acceptable limits. If the intersection point is above the moment curve, a positioner with a larger normal load capacity should be selected and the above steps repeated.


Example #1: Single Direction Moment Load

A 2 pound load is mounted to a single axis linear stage. The diagram shows the load's position in reference to the positioner carriage center. This shows that the load is offset 2 inches from the carriage center creating a roll moment.

The selected positioner is a 4502 ball stage. (The moment load curve for the 4502 is shown below.) First, find 2 pounds on the X axis and draw a vertical line. Next, draw a horizontal line starting at the 2 inches position on the A_S axis (single direction moment). Mark the intersection point.

In this example the intersection point is below the roll moment curve, indicating that the stage is acceptable for this application.

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions stated in the "Offer of Sale" found on www.parker.com/emn.

©2019 Parker Hannifin Corporation, All Rights Reserved

